SINGLE MOVING AVERAGE METHOD FOR PREDICTING FLUCTUATIONS IN PRICES OF BASIC COMMODITIES AND ESSENTIAL GOODS: A CASE STUDY IN SUMEDANG REGENCY
DOI:
https://doi.org/10.69933/v6gxjv38Keywords:
single moving average, prediction fluctuations in prices, essentials goods and important goods, MAPEAbstract
In supply chain management and product planning, the prices of essential and important goods can be difficult to control given the numerous factors that influence their fluctuations. Predicting changes in the prices of essential goods and important items is crucial to ensuring supply and price stability. The dataset of essential goods and important items prices falls under Time Series data. One of the most common prediction methods is the Single Moving Average (SMA), which is the simplest method and does not use weighting in the calculation of closing price movements. The purpose of this study is to evaluate the effectiveness of the Single Moving Average (SMA) method in predicting changes in the prices of essential goods and important items based on historical data. The results of the Single Moving Average (SMA) prediction method will be tested using the MAPE method. This study provides an understanding of the benefits and limitations of the Single Moving Average (SMA) method in predicting changes in the prices of essential goods and important items. The findings also show that this method can provide adequate estimates of changes in the prices of essential goods and important items over a certain period.
Abstract
In supply chain management and product planning, the prices of essential and important goods can be difficult to control given the numerous factors that influence their fluctuations. Predicting changes in the prices of essential goods and important items is crucial to ensuring supply and price stability. The dataset of essential goods and important items prices falls under Time Series data. One of the most common prediction methods is the Single Moving Average (SMA), which is the simplest method and does not use weighting in the calculation of closing price movements. The purpose of this study is to evaluate the effectiveness of the Single Moving Average (SMA) method in predicting changes in the prices of essential goods and important items based on historical data. The results of the Single Moving Average (SMA) prediction method will be tested using the MAPE method. This study provides an understanding of the benefits and limitations of the Single Moving Average (SMA) method in predicting changes in the prices of essential goods and important items. The findings also show that this method can provide adequate estimates of changes in the prices of essential goods and important items over a certain period.
Downloads
References
BPS Kab.Sumedang, “Kabupaten Sumedang Dalam Angka tahun 2024,” 2024.
R. S. H. Ketut Gede Darma Putra, “Meramal Indeks Harga Konsumen Kabupaten di Jawa Timur dengan metode Support Vector Regresion Data Mining,” SNATI, 2019.
D. A. Wibowo, “Prediksi Penjualan Obat Herbal HP Pro menggunakan Algoritma Neutral Network,” "technologia", 9, p. 1, 2018.
M. S. A. M. F. S. L. Amalia Kurniawati, “Analisis perbandingan metode time series forecasting untuk prediksi penjualan obat di apotek (Studi Kasus : Kimia Farma Apotek Takoma),” JATI (Jurnal Jaringan dan Teknologi Informasi), 3 no.1, pp. hlm, 96-106, 2023.
I. R. Ida Nabilah, “Mean Absolut Percentage Error untuk Evaluasi hasil prediksi komoditas laut,” Journal of Information System, 卷vol.5 No 2, pp. 250-255, Nopember 2020.
C. S. Anjani R, Buku Laoran Forecasting Barang Inbound dan Outbound menggunakan Single Exponential Smooting dan Mape, Bandung: Kreatif Industri Nusantara, 2020.
A. S. K. E. L. P. N. W. C. A. P. Ni Nyoman Supuwiningsih, Statistik Forecasting untuk Sistem Informasi Geospasial, R. Rintho R, Banding: Penerbit Media Sains Indonesia, 2022, pp. iv, 105.
A. I. A. W. S. T. G. Nugroho Arif Sudibyo, “Prediksi Inflasi di Indonesia menggunakan Metode Moving Average, Single Exponential Smoothing dan Double Exponential Smoothing,” 卷 1, 编号 10.46306/lb.v1i2, p. 2, Agustus 2020.
E. R. A. A. P. Duanna Purnamasari, “Implementasi Motode Single Moving Average untuk Prediksi Stok Produsen,” JURIKOM (Journal Riset Komputer), 9, 5, pp. 1495-1501, 2022.
W. B. E. K. D. S. Asyifa Nurfadilah, “Penerapan Metode Moving Average untuk Prediksi Indeks Harga Konsumen,” Jurnal Matematika, 21, p. 1, Mei 2022.
A. d. A.Juarna, “Peramalan Tingkay Pengangguran di Indonesia menggunakan Metode Time Series dengan model ARIMA dan Holt Sinters,” Peramalan Tingkay Pengangguran di Indonesia menggunakan Metode Time Series dengan model ARIMA dan Holt Sinters, 卷 26, pp. 13-28, 2021.
I. N. I. Ranggadara, “Absolute Percentage Error untuk Evaluasi hasil prediksi komoditas laut,” Absolute Percentage Error untuk Evaluasi hasil prediksi komoditas laut, 5, pp. 250-255, 2020.
Downloads
Published
Data Availability Statement
The data used for the research is sourced from Operators at 7 Markets and can be directly accessed through sindang.sumedangkab.go.id.
Issue
Section
License
Copyright (c) 2025 FITRI NURJANAH, MOH FIRMAN MUJAHID (Author); Fathoni Mahardika, Deris santika (Translator)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


